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MLR Inference II:  Inference and Assessment Metrics Converge 
 
• t Stats and Incremental Goodness-of-Fit 
• … and WhatsNew about x: 
• Comparing MLR Models II:  t stats and adjusted R2 
• … Proof (Appendix) 
 
 
t Stats and Incremental Goodness-of-Fit 

1. In SLR Inference, you saw the convergence of inference and assessment metrics, driven by 
relationship between t statistics and the 2R measure of goodness of fit, as well as SSE/SSR: 
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2. Those relationships highlighted the fact that precision in estimation is jointly driven by 
sample size and Goodness-of-Fit, and that large samples sizes or high 2R  alone would not 
individually assure precision in estimation. 

3. It turns out that we have similar results in MLR models.  Precision of estimation is jointly 
driven by the degrees of freedom (dofs) and now the marginal or incremental impact that 
each RHS variable has on 2R  or SSE 's:1 
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where 1dofs n k= − − , and ( )2
x xR SSE∆ ∆ is the increase in 

( )2R SSE when x is the last variable added to the model. 

4. This equation makes clear what we previously saw with SLR 
models:   

5. The SLR and MLR formulas are in fact consistent here, once you 
realize that 2R  in an SLR model is in fact the same as 2

xR∆  when going from no RHS 
variables (other than the constant term) to having the one RHS variable x in the SLR model.  
Or put differently, 2 2 20xR R R∆ = − =  is the increase in 2R  when x is introduced to the SLR 
model, and likewise for SSE .  So the SLR and MLR formulas are in fact consistent, and in 
both cases, t stat magnitudes reflect dofs as well as the incremental ( )2R SSE  when variables 
are added to the model. 

  

                                                 
1 The proof of this relationship will come later when we explore the relationship between t stats and F statistics. 
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6. Example:  Here's an example, working with the bodyfat dataset, and a Full Model with hgt, 
wgt and abd on the RHS.  To determine the marginal impact each RHS variable has on RHS, 
we first estimate three models dropping one explanatory variable in each (Models (1)-(3)), 
and then the Full Model (Model (4): 

 
---------------------------------------------------------------------------- 
                ________Dropping One RHS Variable________      Full Model    
                      (1)             (2)             (3)             (4)    
                   brozek          brozek          brozek          brozek    
---------------------------------------------------------------------------- 
wgt                 0.187***       -0.136***      dropped          -0.120*** 
                  (14.48)         (-7.08)                         (-5.41)    
 
hgt                -0.650***      dropped          -0.342***       -0.118    
                  (-6.29)                         (-4.55)         (-1.43)    
 
abd               dropped           0.915***        0.595***        0.880*** 
                                  (17.42)         (23.30)         (15.19)    
 
_cons               31.16***       -41.35***       -12.12*         -32.66*** 
                   (4.51)        (-17.14)         (-2.17)         (-5.01)    
---------------------------------------------------------------------------- 
N                     252             252             252             252    
R-sq               0.4614          0.7187          0.6881          0.7210    
mss (SSE)         6,958.1        10,837.7        10,375.8        1,0872.6    
rss (SSR)         8,121.0         4,241.3         4,703.2         4,206.5    
---------------------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

 

Looking at abd as the last variable, so comparing Models (1) and (4): 
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And so as advertised, 
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7. Notice also that in looking across the various t stats in an MLR model, you see that the 
square of the t stats, 2

ˆ
x

t
β

, are directly proportional to each variable's marginal/incremental 

contribution to 2R  and to SSE 's:  
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, for any two RHS variables x and z. 

a. Comparing wgt and abd: 

i. Since 2 .2596abdR∆ =  and 2 .7210 .6881 .0329wgtR∆ = − = , we have: 
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ii. And since 3,914.5abdSSE∆ =  and 10,872.6 10,375.8 496.8wgtSSE∆ = − = , we have: 
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8. So variables with larger t stats have greater marginal impacts on 2R  and SSE … and vice-
versa.  Who saw this coming? 

 
… and WhatsNew about x: 

9. Perhaps not surprisingly, you can find 2
xR∆  and xSSE∆  in the regression of y on WhatsNew 

about x, where 2
xR∆  is the 2R  in the WhatsNew SLR regression, and xSSE∆  is the SSE  in 

that model.   

10. To see this, let's turn to the previous example, and focus again 
on the abd variable.  From above, we know that 2 .2596abdR∆ =  
and 3,914.5abdSSE∆ = .  Here are the results from the 
regression of brozek on WhatsNew about abd, and the results 
are as advertised: 

 
. reg abd wgt hgt 
. predict whatsnew, resid 
 
. reg brozek whatsnew 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =     87.65 
       Model |   3914.4903         1   3914.4903   Prob > F        =    0.0000 
    Residual |  11164.5263       250  44.6581053   R-squared       =    0.2596 
-------------+----------------------------------   Adj R-squared   =    0.2566 
       Total |  15079.0166       251  60.0757635   Root MSE        =    6.6827 
 
------------------------------------------------------------------------------ 
      brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    whatsnew |    .879846   .0939765     9.36   0.000     .6947594    1.064932 
       _cons |   18.93849   .4209688    44.99   0.000     18.10939    19.76759 
------------------------------------------------------------------------------ 
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Comparing MLR Models II:  t stats and adjusted R2 

11. It turns out that there's a direct relationship between t stats and changes in adjusted R-sq:  
with the addition of RHS variables, the movement of 2R  is directly tied to whether or not the 
t stats of the added variables are larger than 1 in magnitude, or not.   

12. 2R will always increase (decrease) when variables with t stats larger (smaller) than one in 
magnitude are added to the MLR model… and vice-versa when dropping variables from a 
model. 

a. With the addition of a RHS variable:  2 1
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   =   
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.  

b. This results follows directly from 
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 and is proved in the Appendix 

13. Here's an example, working with the bodyfat dataset: 
 

-------------------------------------------------------------- 
                 (1)          (2)          (3)          (4)    
              Brozek       Brozek       Brozek       Brozek    
-------------------------------------------------------------- 
hgt           -0.650***    -0.118       -0.131       -0.138    
             (-6.29)      (-1.43)      (-1.51)      (-1.55)    
 
wgt            0.187***    -0.120***    -0.108**     -0.100*   
             (14.48)      (-5.41)      (-3.18)      (-2.52)    
 
abd                         0.880***     0.883***     0.898*** 
                          (15.19)      (15.13)      (12.62)    
 
hip                                    -0.0564      -0.0723    
                                       (-0.49)      (-0.58)    
 
chest                                               -0.0348    
                                                    (-0.38)    
 
_cons          31.16***    -32.66***    -28.64**     -25.86*   
              (4.51)      (-5.01)      (-2.71)      (-2.01)    
-------------------------------------------------------------- 
N                252          252          252          252    
R-sq           0.461        0.721        0.721        0.721    
adj. R-sq      0.457        0.718        0.717        0.716    
rmse           5.711        4.118        4.125        4.132    
-------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

Notice that in going from Model (1) to (2), 2R  increased and the added (or last or 
incremental) variable (abd) had a t stat of 15.19, well above one in magnitude.  And in going 
from (2) to (3), and (3) to (4), 2R  decreased in both cases, and the t stats of the added 
variables were both less than one in magnitude. 
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14. So there is a direct relationship between the t stats of added/dropped variables and 
movements in adjusted R-squared.  You should never be surprised to see this happening as 
you work your way through various models, adding and subtracting explanatory variables 
and looking at the results. 

15. So if your goal is to maximize 2R  (it's never a great idea to just worry about adjusted R-
squared, but you wouldn’t be the first analyst to do so), you want to add variables with t stats 
above one in magnitude and drop variables with t stats less than one in magnitude. 

 
Appendix 

16. The Result: 
a. The relationship between t stats and changes in adjusted R-sq: 

2 2 0new oldR R− >  if and only if 1tstat >  

17. The Proof: 

a. Let 2 1 old
old

SSRR
SST

= −  be the 2R  before x is added as the last variable in the model… and 

let 2 1 new
new

SSRR
SST

= −  be 2R  with x in the model. 

i. Then given the results above, 
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, the sign of 2 2
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c. And so 2 2 0new oldR R− >  if and only if [ ]( 1) ( ) 0old newn k SSR n k SSR− − − − >  if and only if 
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