MLR Inference II: Inference and Assessment Metrics Converge

- t Stats and Incremental Goodness-of-Fit
- ... and WhatsNew about x:
- Comparing MLR Models II: t stats and adjusted R²
- ... Proof (Appendix)

t Stats and Incremental Goodness-of-Fit

1. In SLR Inference, you saw the convergence of inference and assessment metrics, driven by relationship between t statistics and the R^2 measure of goodness of fit, as well as SSE/SSR:

$$t_{\hat{\beta}_1}^2 = (n-2)\frac{R^2}{1-R^2} = (n-2)\frac{SSE}{SSR}.$$

- 2. Those relationships highlighted the fact that precision in estimation is jointly driven by sample size and Goodness-of-Fit, and that large samples sizes or high R^2 alone would not individually assure precision in estimation.
- 3. It turns out that we have similar results in MLR models. Precision of estimation is jointly driven by the degrees of freedom (*dofs*) and now the marginal or incremental impact that each RHS variable has on R^2 or *SSE* 's:¹

$$t_{\hat{\beta}_x}^2 = dofs \frac{\Delta R_x^2}{1 - R^2} = dofs \frac{\Delta SSE_x}{SSR}$$

where dofs = n - k - 1, and $\Delta R_x^2 (\Delta SSE_x)$ is the increase in $R^2 (SSE)$ when x is the *last* variable added to the model.

4. This equation makes clear what we previously saw with SLR models:

5. The SLR and MLR formulas are in fact consistent here, once you

realize that R^2 in an SLR model is in fact the same as ΔR_x^2 when going from no RHS variables (other than the constant term) to having the one RHS variable *x* in the SLR model. Or put differently, $\Delta R_x^2 = R^2 - 0 = R^2$ is the increase in R^2 when x is introduced to the SLR model, and likewise for *SSE*. So the SLR and MLR formulas are in fact consistent, and in both cases, t stat magnitudes reflect *dofs* as well as the incremental R^2 (*SSE*) when variables are added to the model.

¹ The proof of this relationship will come later when we explore the relationship between t stats and F statistics.

MLR Inference II

6. **Example**: Here's an example, working with the bodyfat dataset, and a Full Model with *hgt*, *wgt* and *abd* on the RHS. To determine the marginal impact each RHS variable has on RHS, we first estimate three models dropping one explanatory variable in each (Models (1)-(3)), and then the Full Model (Model (4):

	Droppin	Dropping One RHS Variable				
	(1)	(2)	(3)	(4)		
	brozek	brozek	brozek	brozek		
wgt	0.187*** (14.48)	-0.136*** (-7.08)	dropped	-0.120*** (-5.41)		
hgt	-0.650*** (-6.29)	dropped	-0.342*** (-4.55)	-0.118 (-1.43)		
abd	dropped	0.915*** (17.42)	0.595*** (23.30)	0.880*** (15.19)		
_cons	31.16***	-41.35***	-12.12*	-32.66***		
	(4.51)	(-17.14)	(-2.17)	(-5.01)		
N	252	252	252	252		
R-sq	0.4614	0.7187	0.6881	0.7210		
mss (SSE)	6,958.1	10,837.7	10,375.8	1,0872.6		
rss (SSR)	8,121.0	4,241.3	4,703.2	4,206.5		

* p<0.05, ** p<0.01, *** p<0.001

Looking at *abd* as the *last* variable, so comparing Models (1) and (4):

$$t_{\hat{\beta}_{abd}}^{2} = (dofs) \frac{\Delta R_{abd}^{2}}{1 - R^{2}} = 248 \frac{.7210 - .4614}{1 - .721} = 248 \frac{.2596}{1 - .721} = (15.19)^{2}$$

$$t_{\hat{\beta}_{abd}}^{2} = dofs \frac{\Delta SSE_{abd}}{SSR} = 248 \frac{10,872.6 - 6,958.1}{4,206.5} = 248 \frac{3,914.5}{4,206.5} = (15.19)^{2}$$

And so as advertised, $t_{\hat{\beta}_x}^2 = dofs \frac{\Delta R_x^2}{1 - R^2} = dofs \frac{\Delta SSE_x}{SSR}$.

7. Notice also that in looking across the various t stats in an MLR model, you see that the square of the t stats, $t_{\hat{\beta}_{*}}^{2}$, are directly proportional to each variable's marginal/incremental

contribution to R^2 and to SSE 's: $\frac{t_{\hat{\beta}_x}^2}{t_{\hat{\beta}_z}^2} = \frac{\Delta R_x^2}{\Delta R_z^2} = \frac{\Delta SSE_x}{\Delta SSE_z}$, for any two RHS variables x and z.

a. Comparing *wgt* and *abd*:

i. Since
$$\Delta R_{abd}^2 = .2596$$
 and $\Delta R_{wgt}^2 = .7210 - .6881 = .0329$, we have:

$$\frac{\Delta R_{abd}^2}{\Delta R_{wgt}^2} = \frac{.2596}{.0329} = 7.88 = \frac{t_{\hat{\beta}_{abd}}^2}{t_{\hat{\beta}_{wgt}}^2} = \left(\frac{15.19}{5.41}\right)^2$$

ii. And since $\Delta SSE_{abd} = 3,914.5$ and $\Delta SSE_{wgt} = 10,872.6 - 10,375.8 = 496.8$, we have:

$$\frac{\Delta SSE_{abd}}{\Delta SSE_{wgt}} = \frac{3,914.5}{496.8} = 7.88 = \frac{t_{\hat{\beta}_{abd}}^2}{t_{\hat{\beta}_{wor}}^2} = \left(\frac{15.19}{5.41}\right)^2$$

8. So variables with larger t stats have greater marginal impacts on R^2 and SSE ... and viceversa. Who saw this coming?

... and WhatsNew about x:

- 9. Perhaps not surprisingly, you can find ΔR_x^2 and ΔSSE_x in the regression of y on *WhatsNew* about x, where ΔR_x^2 is the R^2 in the *WhatsNew* SLR regression, and ΔSSE_x is the *SSE* in that model.
- 10. To see this, let's turn to the previous example, and focus again on the *abd* variable. From above, we know that $\Delta R_{abd}^2 = .2596$ and $\Delta SSE_{abd} = 3,914.5$. Here are the results from the regression of *brozek* on *WhatsNew* about *abd*, and the results are as advertised:

. reg abd wgt . predict what						
. reg brozek v	whatsnew					
Source	SS	df	MS	Number	of obs =	252
	+			F(1, 2	50) =	87.65
Model	3914.4903	1	3914.4903	Prob >	F =	0.0000
Residual	11164.5263	250	44.6581053	R-squa:	red =	0.2596
	+			Adj R-	squared =	0.2566
Total	15079.0166	251	60.0757635	Root M	SE =	6.6827
brozek	Coef.	Std. Err.	t F	?> t	[95% Conf.	Interval]
whatsnew	.879846	.0939765	9.36 0	0.000	.6947594	1.064932
cons	18.93849			0.000	18.10939	

Comparing MLR Models II: t stats and adjusted R²

- 11. It turns out that there's a direct relationship between t stats and changes in adjusted R-sq: with the addition of RHS variables, the movement of \overline{R}^2 is directly tied to whether or not the t stats of the added variables are larger than 1 in magnitude, or not.
- 12. \overline{R}^2 will always increase (decrease) when variables with t stats larger (smaller) than one in magnitude are added to the MLR model... and *vice-versa* when dropping variables from a model.
 - a. With the addition of a RHS variable: $\overline{R}^2 \begin{bmatrix} increases \\ stays the same \\ decreases \end{bmatrix}$ when $|t| \begin{bmatrix} > \\ = \\ < \end{bmatrix} 1$.

b. This results follows directly from $t_{\hat{\beta}_x}^2 = dofs \frac{\Delta R_x^2}{1 - R^2}$ and is proved in the Appendix

13. Here's an example, working with the bodyfat dataset:

t statistics in parentheses							
N R-sq adj. R-sq rmse	252 0.461 0.457 5.711	252 0.721 0.718 4.118	252 0.721 0.717 4.125	252 0.721 0.716 4.132			
_cons		-32.66*** (-5.01)		-25.86* (-2.01)			
chest				-0.0348 (-0.38)			
hip			-0.0564 (-0.49)	-0.0723 (-0.58)			
abd			0.883*** (15.13)				
wgt		-0.120*** (-5.41)					
hgt	-0.650*** (-6.29)	-0.118 (-1.43)		-0.138 (-1.55)			
	(1) Brozek	(2) Brozek	(3) Brozek	(4) Brozek			

* p<0.05, ** p<0.01, *** p<0.001

Notice that in going from Model (1) to (2), \overline{R}^2 increased and the added (or *last* or *incremental*) variable (*abd*) had a t stat of 15.19, well above one in magnitude. And in going from (2) to (3), and (3) to (4), \overline{R}^2 decreased in both cases, and the t stats of the added variables were both less than one in magnitude.

MLR Inference II

- 14. So there is a direct relationship between the t stats of added/dropped variables and movements in adjusted R-squared. You should never be surprised to see this happening as you work your way through various models, adding and subtracting explanatory variables and looking at the results.
- 15. So if your goal is to maximize \overline{R}^2 (it's never a great idea to just worry about adjusted R-squared, but you wouldn't be the first analyst to do so), you want to add variables with t stats above one in magnitude and drop variables with t stats less than one in magnitude.

Appendix

16. The Result:

a. The relationship between t stats and changes in adjusted R-sq:

$$\overline{R}_{new}^2 - \overline{R}_{old}^2 > 0$$
 if and only if $|tstat| > 1$

17. The Proof:

- a. Let $R_{old}^2 = 1 \frac{SSR_{old}}{SST}$ be the R^2 before x is added as the *last* variable in the model... and let $R_{new}^2 = 1 - \frac{SSR_{new}}{SST}$ be R^2 with x in the model.
 - i. Then given the results above,

$$t_{\hat{\beta}_{x}}^{2} = (n-k-1)\frac{R_{new}^{2} - R_{old}^{2}}{1 - R_{new}^{2}} = (n-k-1)\frac{\left(SSR_{old} - SSR_{new}\right) / SST}{SSR_{new}} / SST}{SSR_{new}} = (n-k-1)\frac{\left(SSR_{old} - SSR_{new}\right)}{SSR_{new}}.$$

ii. And so if |tstat| > 1 then $t^2 > 1$ and $(n-k-1)\frac{(SSR_{old} - SSR_{new})}{SSR_{new}} > 1$, or put differently:

$$(n-k-1)SSR_{old} > (n-k)SSR_{new}$$
.

b. But
$$\overline{R}_{new}^2 - \overline{R}_{old}^2 = \frac{n-1}{n-k} \frac{SSR_{old}}{SST} - \frac{n-1}{n-k-1} \frac{SSR_{new}}{SST}$$

= $\frac{(n-1)}{(n-k)(n-k-1)} [(n-k-1)SSR_{old} - (n-k)SSR_{new}].$

- i. And since $\frac{(n-1)}{(n-k)(n-k-1)} > 0$, the sign of $\overline{R}_{new}^2 \overline{R}_{old}^2$ matches the sign of $[(n-k-1)SSR_{old} (n-k)SSR_{new}]$.
- c. And so $\overline{R}_{new}^2 \overline{R}_{old}^2 > 0$ if and only if $[(n-k-1)SSR_{old} (n-k)SSR_{new}] > 0$ if and only if |tstat| > 1