MLR Inference II: Inference and Assessment Metrics Converge

- t Stats and Incremental Goodness-of-Fit
- ... and WhatsNew about x:
- Comparing MLR Models II: t stats and adjusted R^{2}
- ... Proof (Appendix)

t Stats and Incremental Goodness-of-Fit

1. In SLR Inference, you saw the convergence of inference and assessment metrics, driven by relationship between t statistics and the R^{2} measure of goodness of fit, as well as SSE/SSR:

$$
t_{\hat{\beta}_{1}}^{2}=(n-2) \frac{R^{2}}{1-R^{2}}=(n-2) \frac{S S E}{S S R} .
$$

2. Those relationships highlighted the fact that precision in estimation is jointly driven by sample size and Goodness-of-Fit, and that large samples sizes or high R^{2} alone would not individually assure precision in estimation.
3. It turns out that we have similar results in MLR models. Precision of estimation is jointly driven by the degrees of freedom (dofs) and now the marginal or incremental impact that each RHS variable has on R^{2} or $S S E$'s: ${ }^{1}$

$$
t_{\hat{\beta}_{x}}^{2}=\operatorname{dofs} \frac{\Delta R_{x}^{2}}{1-R^{2}}=\operatorname{dofs} \frac{\Delta S S E_{x}}{S S R}
$$

where dofs $=n-k-1$, and $\Delta R_{x}^{2}\left(\Delta S S E_{x}\right)$ is the increase in R^{2} (SSE) when x is the last variable added to the model.
4. This equation makes clear what we previously saw with SLR models:
5. The SLR and MLR formulas are in fact consistent here, once you realize that R^{2} in an SLR model is in fact the same as ΔR_{x}^{2} when going from no RHS variables (other than the constant term) to having the one RHS variable x in the SLR model. Or put differently, $\Delta R_{x}^{2}=R^{2}-0=R^{2}$ is the increase in R^{2} when x is introduced to the SLR model, and likewise for SSE. So the SLR and MLR formulas are in fact consistent, and in both cases, t stat magnitudes reflect dofs as well as the incremental R^{2} (SSE) when variables are added to the model.

[^0]
MLR Inference II

6. Example: Here's an example, working with the bodyfat dataset, and a Full Model with hgt , wgt and $a b d$ on the RHS. To determine the marginal impact each RHS variable has on RHS, we first estimate three models dropping one explanatory variable in each (Models (1)-(3)), and then the Full Model (Model (4):

Looking at $a b d$ as the last variable, so comparing Models (1) and (4):

$$
\begin{aligned}
& t_{\hat{\beta}_{\text {obd }}}^{2}=(\text { dofs }) \frac{\Delta R_{a b d}^{2}}{1-R^{2}}=248 \frac{.7210-.4614}{1-.721}=248 \frac{.2596}{1-.721}=(15.19)^{2} \\
& t_{\hat{\beta}_{\text {obd }}}^{2}=\operatorname{dofs} \frac{\Delta S S E_{a b d}}{S S R}=248 \frac{10,872.6-6,958.1}{4,206.5}=248 \frac{3,914.5}{4,206.5}=(15.19)^{2}
\end{aligned}
$$

And so as advertised, $t_{\hat{\beta}_{x}}^{2}=\operatorname{dofs} \frac{\Delta R_{x}^{2}}{1-R^{2}}=\operatorname{dofs} \frac{\Delta S S E_{x}}{S S R}$.
7. Notice also that in looking across the various t stats in an MLR model, you see that the square of the t stats, $t_{\hat{\beta}_{x}}^{2}$, are directly proportional to each variable's marginal/incremental contribution to R^{2} and to $S S E$'s: $\frac{t_{\hat{\beta}_{x}}^{2}}{t_{\hat{\beta}_{z}}^{2}}=\frac{\Delta R_{x}^{2}}{\Delta R_{z}^{2}}=\frac{\Delta S S E_{x}}{\Delta S S E_{z}}$, for any two RHS variables x and z.
a. Comparing wgt and $a b d$:
i. Since $\Delta R_{a b d}^{2}=.2596$ and $\Delta R_{w g t}^{2}=.7210-.6881=.0329$, we have:

$$
\frac{\Delta R_{a b d}^{2}}{\Delta R_{\text {wgt }}^{2}}=\frac{.2596}{.0329}=7.88=\frac{t_{\hat{\beta}_{\text {obd }}}^{2}}{t_{\hat{\beta}_{\text {wgt }}}^{2}}=\left(\frac{15.19}{5.41}\right)^{2}
$$

MLR Inference II

ii. And since $\Delta S S E_{a b d}=3,914.5$ and $\Delta S S E_{w g t}=10,872.6-10,375.8=496.8$, we have:

$$
\frac{\Delta S S E_{a b d}}{\Delta S S E_{w g t}}=\frac{3,914.5}{496.8}=7.88=\frac{t_{\hat{\beta}_{\text {obd }}}^{2}}{t_{\hat{\beta}_{w g t}}^{2}}=\left(\frac{15.19}{5.41}\right)^{2}
$$

8. So variables with larger t stats have greater marginal impacts on R^{2} and SSE \ldots and viceversa. Who saw this coming?

... and WhatsNew about x:

9. Perhaps not surprisingly, you can find ΔR_{x}^{2} and $\Delta S S E_{x}$ in the regression of y on WhatsNew about x, where ΔR_{x}^{2} is the R^{2} in the WhatsNew SLR regression, and $\Delta S S E_{x}$ is the SSE in that model.
10. To see this, let's turn to the previous example, and focus again on the $a b d$ variable. From above, we know that $\Delta R_{a b d}^{2}=.2596$ and $\Delta S S E_{a b d}=3,914.5$. Here are the results from the regression of brozek on WhatsNew about $a b d$, and the results are as advertised:

```
. reg abd wgt hgt
. predict whatsnew, resid
. reg brozek whatsnew
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Source & SS & df & MS & Number of obs & \(=\) & 252 \\
\hline & & & & F (1, 250) & & 87.65 \\
\hline Model & 3914.4903 & 1 & 3914.4903 & Prob > F & = & 0.0000 \\
\hline Residual & 11164.5263 & 250 & 44.6581053 & R-squared & = & 0.2596 \\
\hline & & & & Adj R-squared & = & 0.2566 \\
\hline Total & 15079.0166 & 251 & 60.0757635 & Root MSE & \(=\) & 6.6827 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline brozek & Coef. & \multicolumn{2}{|l|}{Std. Err.} & \(P>|t|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline whatsnew & . 879846 & . 0939765 & 9.36 & 0.000 & . 6947594 & 1.064932 \\
\hline _cons & 18.93849 & . 4209688 & 44.99 & 0.000 & 18.10939 & 19.76759 \\
\hline
\end{tabular}
```


MLR Inference II

Comparing MLR Models II: t stats and adjusted $\boldsymbol{R}^{\mathbf{2}}$

11. It turns out that there's a direct relationship between t stats and changes in adjusted $R-s q$: with the addition of RHS variables, the movement of \bar{R}^{2} is directly tied to whether or not the t stats of the added variables are larger than 1 in magnitude, or not.
12. \bar{R}^{2} will always increase (decrease) when variables with t stats larger (smaller) than one in magnitude are added to the MLR model... and vice-versa when dropping variables from a model.
a. With the addition of a RHS variable: $\bar{R}^{2}\left[\begin{array}{c}\text { increases } \\ \text { stays the same } \\ \text { decreases }\end{array}\right]$ when $|t|\left[\begin{array}{l}> \\ = \\ <\end{array}\right] 1$. b. This results follows directly from $t_{\hat{\beta}_{x}}^{2}=\operatorname{dofs} \frac{\Delta R_{x}^{2}}{1-R^{2}}$ and is proved in the Appendix
13. Here's an example, working with the bodyfat dataset:

	$\begin{array}{r} \text { (1) } \\ \text { Brozek } \end{array}$	$\begin{array}{r} (2) \\ \text { Brozek } \end{array}$	(3) Brozek	$\begin{array}{r} (4) \\ \text { Brozek } \end{array}$ Brozek
hgt	$\begin{aligned} & -0.650 \text { *** } \\ & (-6.29) \end{aligned}$	$\begin{array}{r} -0.118 \\ (-1.43) \end{array}$	$\begin{array}{r} -0.131 \\ (-1.51) \end{array}$	$\begin{array}{r} -0.138 \\ (-1.55) \end{array}$
wgt	$\begin{aligned} & 0.187 * * * \\ & (14.48) \end{aligned}$	$\begin{aligned} & -0.120 \text { *** } \\ & (-5.41) \end{aligned}$	$\begin{aligned} & -0.108 * * \\ & (-3.18) \end{aligned}$	$\begin{aligned} & -0.100 * \\ & (-2.52) \end{aligned}$
abd		$\begin{aligned} & 0.880 * * * \\ & (15.19) \end{aligned}$	$\begin{aligned} & 0.883^{* * *} \\ & (15.13) \end{aligned}$	$\begin{aligned} & 0.898 * * * \\ & (12.62) \end{aligned}$
hip			$\begin{aligned} & -0.0564 \\ & (-0.49) \end{aligned}$	$\begin{aligned} & -0.0723 \\ & (-0.58) \end{aligned}$
chest				$\begin{aligned} & -0.0348 \\ & (-0.38) \end{aligned}$
_cons	$\begin{aligned} & 31.16 * * * \\ & (4.51) \end{aligned}$	$\begin{aligned} & -32.66^{* * *} \\ & (-5.01) \end{aligned}$	$\begin{aligned} & -28.64 * * \\ & (-2.71) \end{aligned}$	$\begin{gathered} -25.86 * \\ (-2.01) \end{gathered}$
N	252	252	252	252
R-sq	0.461	0.721	0.721	0.721
adj. R-sq	0.457	0.718	0.717	0.716
rmse	5.711	4.118	4.125	4.132

Notice that in going from Model (1) to (2), \bar{R}^{2} increased and the added (or last or incremental) variable ($a b d$) had a t stat of 15.19 , well above one in magnitude. And in going from (2) to (3), and (3) to (4), \bar{R}^{2} decreased in both cases, and the t stats of the added variables were both less than one in magnitude.

MLR Inference II

14. So there is a direct relationship between the t stats of added/dropped variables and movements in adjusted R-squared. You should never be surprised to see this happening as you work your way through various models, adding and subtracting explanatory variables and looking at the results.
15. So if your goal is to maximize \bar{R}^{2} (it's never a great idea to just worry about adjusted Rsquared, but you wouldn't be the first analyst to do so), you want to add variables with t stats above one in magnitude and drop variables with t stats less than one in magnitude.

Appendix

16. The Result:

a. The relationship between t stats and changes in adjusted R -sq:
$\bar{R}_{\text {new }}^{2}-\bar{R}_{\text {old }}^{2}>0$ if and only if \mid tstat $\mid>1$

17. The Proof:

a. Let $R_{\text {old }}^{2}=1-\frac{S S R_{\text {old }}}{S S T}$ be the R^{2} before x is added as the last variable in the model... and let $R_{\text {new }}^{2}=1-\frac{S S R_{\text {new }}}{S S T}$ be R^{2} with x in the model.
i. Then given the results above,

$$
\begin{aligned}
& t_{\hat{\beta}_{x}}^{2}=(n-k-1) \frac{R_{\text {new }}^{2}-R_{\text {old }}^{2}}{1-R_{\text {new }}^{2}}=(n-k-1) \frac{\left(S S R_{\text {old }}-S S R_{\text {new }}\right) / S S T}{S S R_{\text {new }} / S S T} \\
& =(n-k-1) \frac{\left(S S R_{\text {old }}-S S R_{\text {new }}\right)}{S S R_{\text {new }}} .
\end{aligned}
$$

ii. And so if \mid tstat $\mid>1$ then $t^{2}>1$ and $(n-k-1) \frac{\left(S S R_{\text {old }}-S S R_{\text {new }}\right)}{S S R_{\text {new }}}>1$, or put differently:
$(n-k-1) S S R_{\text {old }}>(n-k) S S R_{\text {new }}$.
b. But $\bar{R}_{\text {new }}^{2}-\bar{R}_{\text {old }}^{2}=\frac{n-1}{n-k} \frac{S S R_{\text {old }}}{S S T}-\frac{n-1}{n-k-1} \frac{S S R_{\text {new }}}{S S T}$
$=\frac{(n-1)}{(n-k)(n-k-1)}\left[(n-k-1) S S R_{\text {old }}-(n-k) S S R_{\text {new }}\right]$.
i. And since $\frac{(n-1)}{(n-k)(n-k-1)}>0$, the sign of $\bar{R}_{\text {new }}^{2}-\bar{R}_{\text {old }}^{2}$ matches the sign of $\left[(n-k-1)\right.$ SSR $\left._{\text {old }}-(n-k) S S R_{\text {new }}\right]$.
c. And so $\bar{R}_{\text {new }}^{2}-\bar{R}_{\text {old }}^{2}>0$ if and only if $\left[(n-k-1) S S R_{\text {old }}-(n-k) S S R_{\text {new }}\right]>0$ if and only if \mid tstat $\mid>1$

[^0]: ${ }^{1}$ The proof of this relationship will come later when we explore the relationship between t stats and F statistics.

